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DIFFRACTION OF A PLANE WAVE BY AN INFINITE ELASTIC PLATE STIFFENED
BY A DOUBLY PERIODIC SET OF RIGID RIBS'

B. P. BELINSKII

Thediffraction of a plane wave by an infinite elastic plate stiffened by a
doubly periodic set of rigid ribs of moderate wave dimensions is studied.
The problem is reduced to an infinite quasiregular system of linear
algebraic eguations, and their solution describes the amplitudes of the
waves propagating from the plate into the fluid.

The effect of a periodic set of parallel ribs, which stiffen an elastic plate, on its
acoustic properties, has been studied in reasonable detail. An exact soclution of the prohlem
of the diffraction of a plane wave by such a plate is given in /1/ where the frequency rela-
tionships of the reflection and transmission coefficients of a plane wave were also studied
and simple approximate formulas were obtained for the limiting cases,

1. we will investigate the diffraction of a plane pressure wave

Po == exp (ik ((z cos @, + ysin @) sin 8, — z cos 6,))

incident on an infinite plate {—oo <<z, y < 0,2 =0} stiffened by a doubly periodic set of
rigid ribs {=o0 <z < 00, y= mb; —o0 <y <{ o0, = na; —oco < n,m< o} The pressure p (z, ¥,2)
in the medium satisfies the Helmholtz equation with the boundary condition at the plate given
by

DA—kE(z, N+ [Ple=0=0 (1.1)

(z 7= na, y 5= mb)

ko = (p°w*H°IDY

Here D is the cylindrical rigidity of the plate, E(z, y) is its displacement, connected with
the pressure by the adhesion condition §({(z, y) = p, (z, y, 0)/ (p,0®), p, is the density of the
liquid, A, is the two-dimensional Laplace operator, k, is the wave number of the flexural
waves in the plate, p° is the plate density and KH°is its thickness. The symbol [¢] (z = 0)
denotes the jump in the value of the function ¢ at z== 0. The harmonic dependence of the
processes on time exp (—iwt) is omitted.

We will first assume that fluid is present on one side of the plate only (z > 0). The
case of two-sided contact can be studied in exactly the same manner. We shall therefore only
refer to it at the stage of numerical analysis and interpretation of the results. The bound-
ary contact conditions (BCC) appear when the bending and torsional oscillations of the ribs
and their rigid coupling to the plate carrying them are taken into account /2/

—D o+ 2= 0) &) (v = na) = —ieZyl (1.2)
D [t + ofy) (& = na) = —iwZ;f,
(z = na, y %= mb)
—D B+ C— 0) &] (v = mb) = —i0Znt
D[ty + O8] (y = mb) = —iwZafy (y = mb, z = na)

Here ¢ is Poisson's ratio of the plate, and the operators Z,, Z, (p= 1,2) are the force and
momentum impedances of the ribs respectively.

*prikl.Matem.Mekhan. ,47,6,962-971,1983
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Unlike the well-known boundary contact problems /3—5/, the three-dimensional boundary
value problem described here can be called a second-order boundary contact problem since, in
addition to the boundary condition (1.1) and BCC (l1.2), we must also formulate the BCC at the
points of intersection of the ribs (¥ = na,y = mb). Below we shall describe the class of
admissible second-order BCC. The specific analysis will be performed for two parameters

f=f=g, =0 (1.3
F=M,=M,=0 (1.4)
(F = [Eolafirez) (z = na) 4+ [Erlidyyy] (y = mb)

M= —1EIE,] (y=mb), My= —I[E ] (&= na))

In the first case the nodes are assumed to be rigidly fixed, and free in the second case. Here
F denotes the concentrated force appearing at the node,M,and M, are concentrated moments,

and the quantities E,, I,(p =1, 2) denote Young's modulus and the moments of inertia of the
corresponding ribs. Finally, the diffuse field ¢ = p — p, must satisfy the principle of
limit absorption. An analogous problem was first studied in /6/, without offering a mathe-
matical justification for the numerical algorithm employed, and the problem of second-order
BCC was not formulated. We shall show that this implies that it was case (1.4) of free nodes
that was studied.

2. In view of the fact that the incident wave is almost periodic, we shall seek the
diffuse field in the form of an almost~periodic function

g (z+ na, y+ mbd, z2) = q (z, ¥, 2) exp (ina + imP) (2.1)
a = ka cos @, 8in 8,, p = kb sin g, sin 8,

and consider the boundary value problem in the fundamental period Qg == {0 <<z <{a, 0 <<y <b,
0 <z < o}, To justify the scheme, which is based on the application of the principle of
limiting absorption, we must establish the uniqueness of the solution of the homogeneous
boundary value problem (p,=0) when there is absorption in the medium (Im4> 0). The solu-
tion is sought in the class of functions with a finite norm in [, (Q,). We shall make use of
the identity following from Green's second formula for the Laplace operator

~Im &2 gy = Tm § 24 7dS, Q=8 x(0<z< )
20
Here §, denotes a certajin translation of the fundamental period of the plate, such that only
one node of the mesh (0,0) lies within it, and the bar denotes a complex conjugate. In trans-
forming the right-~hand side describing the energy flux across the boundary 4Q , we use the
Green's second formula for a plate with ribs /7/. As a result we obtain the following indent~
ity:
— b = o Im EF + M0+ B2 0, 0) (2.2)

We shall call the second-order BCC admissible if the right-hand side of this identity is
non-negative. For example, BCC of the form (F, M,, M,) = Z ¢, §,, &) (¢ denotes transposition)
with the impedance matrix Z, the eigenvalues of which have non-negative imaginary parts, will
be admissible. We can consider the BCC (1.3) and (1.4) as special cases as Z— > and Z —~0
respectively. It is obvious that ¢ =0 for the admissible BCC, and this implies that the
solution is unique.

Henceforth, it will be convenient to represent the diffuse field by a double Fourier
series with unknown amplitudes 4,

—1 .
q(x,y,z)=—;,,—ZZAMBXP(MJ-%-ley’-Yan) (2.3)
(7"7: = 2Tm¢+ 2 y by = anb+ B y Yam = (Anz + me - kZ)'/,' Re Yn. m > 0)

Here and henceforth the fact that there are no limits on the summation signs means that the
summation is carried out over all integer values of n and m. When there is no absorption
(Imk =0) the energy identity has the form

2 VY | oft Re V=TT =5 = (2.4

and the summation need only to be carried out over the waves propagating upwards for which

A2 + pmi< k. Under the conditions of the homogeneous problem the amplitude of these waves
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will thus be zero. At certain frequencies however, sclutions of the homogeneous boundary value
problem of the wave type (2.3) moving along the construction and decreasing exponentially with
distance from it, may appear.

3. To find the diffraction component of the field qg we shall separate from the total
field not only the incident wave, but also the wave p; reflected from the homogeneous plate

P =po+ P+ ¢ pp = R exp (i (ax/a + By/b + kz cosB,))
R =R /R,, Ry = (k'sin %0, — k') ik cos 8, 4~ v, v = p,@®D

Following the accepted methods of solving boundary contact problems, we shall rewrite the
boundary condition (1.1) treating it as inhomogeneous

D (A —k")E(z, y) +4(z,4,0) = (3.1)
L Zeim (6 (z — na) By (y) + & (z — na) Cy (y)) +
< Y e (8 (y —mb) By (2) + & (y ~ mh) C (2))

(— o< 2,y < o)

Here and henceforth the symbol n or m appearing under the summation sign will denote summa-
tion over all integer values of nor m respectively. The unknown functions B,, B,, Cy, C, are
analogs of the boundary contact constants appearing in plane problems of acoustics /3-5/.
Substituting into (3.1) the field g in the form of the series (2.3) and using the condition
of adhesion, we obtain

Ap m = (Bin T i bmQin + Pom + iMGam )/ Ln, m (3.2)
Lym= (A2 + wm®)?® — k') Yam — v

Here Pi. Qins P2m»> §2m are the Fourier coefficients of the functions B, (z), C; (), B, (y), C, (v
respectively. The displacement field has the form

. 1 v . . .
He W) = o Y 3 Lo (Pan - Ilman + Pam + thatam) €XP (i (hnZ + pmt)) (3-3)

The continuity of displacements and angles of rotation of the plate when passing across
the ribs is ensured by requiring that the following asymptotic estimates hold for the unknown
Pins Q1ny Pamy Qgm'

Pins Pam = o (1)v din = 0 (1/71.), Jom = o (i/m) (nr m — o)
It can be confirmed that the above estimates guarantee the finiteness of the potential energy
of a single period of the plate. The BCC (1.2) contain the discontinuities of high-order
derivatives of the displacement field % . It can be shown that a discontinuity in any deriva-
tive of up to the third order in ! is the same as the discontinuity for the field E derived

from Othe field ¢ by discarding from the symbol of the boundary operator L, , its dynamic part
(v—0)

Gz y) = po:,aa,, Z Z ot _ﬁ 575t (Pin + indin + Pam - iAnfom) €XP (2 (AnZ + tmy)) (3.4)

Moreover, since the discontinuities in the derivatives are connected with the non-uniform
convergence of series (3.4), it follows that we can delete from it any finite number of terms.

Below we shall find the following identity useful, the validity of which can be confirmed
using the Parseval equation:

exp(i}."::) .
FaET 4l:...l‘ Zexp(—tna—lumllx+na|)(1 + |kmi 2 + nal) (3.5)

n

The identity enables us to confine ourselves to terms with n = 0 when computing the necessary
jumps in the derivatives on the line z = 0. Finally we have, at y==0,

[Exx] (z=0)= ’%ﬁ Zq!m exp (iptmy/) (3.6)
Baxx] (2 =0) = —po:)—zb Z P2m €xP (ipimy)

The BCC (1.2) are formulated outside the nodes (z = na, y = mb). At the nodes we must take
into account the concentrated reactions, and this can be done by introducing into (1.2) delta
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functions with unknown multipliers C, (1 <s < 4). Let us write the first two transformed
equations (1.2)

— D (fae] (¢ =na) + 5 Y 8 (y — mb) exp (im) = (3.7)
— 02y (E +E.) "

D[Ees] (z=na) — = ¥, 8 (y — mb)exp (imf)=
—iwZy (B, +8x) (z=na, — o0 y L oo)

1;0;,1 exp(i (a % + ﬁ—g—))

&, =ikcosB

Here §,  is the plate displacement corresponding to the geometrical part of the field. Explicit
expressions for the rib impedances parallel to the y-axis /2/ have the form

—_ imZu = Ellla‘/ay‘ —_— plb]_Hl(l)z' —_ i(l)le = __Klaﬂ/ayil b 9111“”

From now on py, &y, H; will denote the density, height and thickness of the ribs, and K,and I,
their torsional rigidity and the moment of inertia of the cross section. The corresponding
quantities for the ribs parallel to the x-axis will be given the subscript 2.

Let us introduce the symbols for the impedance operators, i.e. their Fourier transforms
normalized to the rigidity of the plate

Qin = (Exlphn* — ppbyH ")/ (bD), Wy, = (Kh? — pol,0%)/(bD) (3.8)
Qim = (B 1m* — py01H10*)/(aD), Wy, =
(Kypm® — p1f10%) / (aD)

Substituting into BCC (3.7) the series for the displacements (3.3) and taking into account
the expressions for the jumps (3.6), we arrive at the following system of linear algebraic
equations:

Pin + Bin (3 pamPrm + tho 3 Prmam + J'Pin + Ju'tin) = (3.9)
— 010d8,° + Cs

9in— Wi (2 onmitimPrm + thn 3} Prmitindim + JulP1n + Jn'din) =
W 1oiptedd,® + Cy

Prm + Qam (3 PnmPia + i 5 Pundin + LnPim + In'dam) =
— D40d8,° + C1

Gam — Wan (S oamPinitn + i 5 punitadin + In'Pam+ I mam)=
Waniko d8,° + Ca

(Prm=Vn, m/Ln, my d ==ab(R — 1) ik 038y, — 00 < n, m < )

(I =2 pum (Pa)'s I = 3 O (ipm)'s == 0 1, 2)

where the constants C, are found from the BCC (1.3) or (l1.4). We shall deal with the case of

damped nodes only. Let us divide the first equation of (3.9) by Q,, and carry out the summa-
tion over all n. We obtain

; Pin/Qun + S = Ca D1/,
(S = ; Jn'Pin + ; Jolgin + 21m°[’zm + ZI Im'qam d,)

At the same time, the condition of clamping the node §(0,0) +§& (0,0) =0 and representation
(3.3) together imply that § =0, and as a result we obtain (,. The final system of linear
algebraic equations takes the form

Unpn + 2 Vampm — 2 TnmPm=Pn’ (— 00 < n < o) (3.10)
m=n m
where
Tin + Jo° Jal Pnn iAnPan
U = — Jat Ton — Jo? = inPnn  AnbinPnn
T Pan iBpnn  n+ 10’ It
— ihnonn AnjinPnn — It Ten — In?
Vo — 0 anV:;m T 1 iAn
i Pmnvim 0 ' " - ip'm l‘np'm
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Vi, = ’ 1 . ipn “ Tin=1/4n, Ton=1/Wy,

- ";"m ;"mp'ﬂ ' MNigm = 1/92m7 Tem = 1/Wsm
Pn =(plm G1ny Pon, Q-_vn)', Pn° =d (— 1, ~ g, ~ 1, — ixo)‘ 8,°
Tom = diag (T:nTam/T1, TonTom/Tes  ThanTim/Mhs TenTlem/T2)

Ta'—"zl"mx Tls=2"]m (— o < nym L oo)
n a

4. Next we shall study the problems of normal incidence of a plane wave on a plate fit-
ted with a square mesh of identical ribs (b = a, cos 8, = 1). System (3.10) then takes the form

(rn > 0)

. T o
UnDin T+ 2 EmPrmPrm — _;Tﬂ' Z EnTimPim = — dé,; (4.1)

m20 m=0
Up=Tin+ Jn’ + EnPnny En= 2—8y°
Here and below a prime on the summation sign denotes that there is no term with m = n. The
complete pressure field is expressed by the soluition of the system p,

: . 1
p=-exp(— ikz) + Rexp (ikz) — — Z Z

(Pn + Pm) X €Xp (i (Ax + Aml) — VYnm?2) (4.2)

Ln. m

In particular, the expression for the reflection coefficient of the principal wave is

. i 2 P
.’.0=h-—-—2m (4.3)

Similar arguments for the case of free nodes yield the following system of equations:

UnP1n + Z>'osmpnmp:m=—- dé,.°> (n>0) (4.4)

which agrees with the system from /6/. This suggests that the arguments used in that paper
imply indirectly the use of BCC (l1.4).

Let us use (4.4) to see whether the reduction method can be applied to infinite systems.
We divide every equation by u, and estimate the sum of s, moduli of the elements of the n-th
row of the resulting matrix. Remembering that p,, and u,are positive, we find for large
numbers that

Sp = % mz>,‘; EmPrm =-'-‘_1: <; Pam — 2Pnn> = '::(Jno — 2pnn)

The asymptotic of J,°with respect to the subscript can be obtained by comparing this series
with its value at zero frequency . The latter series can be summed explicitly to yield

7= A () A o) u=T 4 0

Taking into account the obvious asymptotic form
Tin ~ co/(2nnia)t, ¢y = aD/(EI,)
we obtain

—1—s . TSk N 1 ( ok )
Sn = n s Sp = Tln+ ]no+2p’"‘ nn

so that s,<<1 for fairly large n. From the well-known theorems on infinite algebraic
systems /8/ we infer that the reduction method can be used when the free terms are estimated
using the quantitites Ks,', where X is any constant. The last estimate is obvious.

We shall also show that the proof of the applicability of the reduction method given in
/6/ is based on the hypothesis that the Hilbert-Schmidt norm of the corresponding matrix is
finite. Incidentally, the double series with the general term |pn,m/us|® diverges. We note
that the present investigation of the infinite system (4.1), (4.4) is similar to that carried
out in /8, 9/ in connection with the problem of the flexure of a rectangular plate with rigid-
ly clamped edges. The systems in question become those of /8, 9/ as «w -0, provided that the
impedances Zp, Zp — oo.

5. Let us investigate the dynamic behaviour, with respect to the parameters of the
problem, of the reflection coefficient K,.of the principle wave given by (4.3). We will consider
the case of free nodes, and restrict ourselves first to the diagonal approximation in system
(4.4), i.e. Py = —db,°/uy . We have
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Kom 850, wi=h' =, B=Tu+2) puw (5.1)
The approximate formula obtained for the reflection coefficient is superficially analogous
to the formula for a homogeneous plate, differing only in the fact that the wave number k,
is replaced by a derived quantity x expressing the effect of the stiffeners. Similarly, in
the problem of a plane wave passing through a plate we have the following expression for the
reflection coefficient K; and transmission coefficient T of the principal wave:

,  kw
K ) 5.2
L 2V ( )
and in comnuting B we sheould takes +h peile) for +the nlata maratnyr in +ha farm
ang in <omputing £ we sacuid taxe IOr the piate Operalor in tae Ior

An® + pm®)? — k') Yum — 2v
The approximate formula (5.1) has a simple interpretation. The quantity B is real up to the
first "cut-off frequency" (kg < 2n), andof all the waves shown in the field (2.3), the only
wave still propagating is the null wave (n = m = 0), Therefore | K, ] =1 and the only para-
meter that changes with the frequency is the phase of the reflected wave. Further, with the
same parameters of the problem we find that when B=o0, x =k, and the plate behaves as a
homogeneous plate with its acoustic field unaffected by the ribs. It is clear that this case
ocaurs when Aig = 2nis, where A is the wave number of the flexural waves in the plate-fluid °

system, and s is an integer. When B =0 , we have x = x, K, =1 and the plate behaves as
a perfectly rigid surface. Finally, when B = 2/k¢* we have x =0, K,= —1 and the plate
becomes perfectly plastic. Similarly, in the problem of wave transmission the value B =(

results in total reflection, and B = 2/ky* in total transmission of the incident wave. Thus
using the approximate formulas (5.1), (5.2) we can describe all characteristic values of the

raflanticnn amd +ramamdoandan ~es EL£: ~darta tha Lommerian ot oo ol o L Fomm s var

eriection auu l—LGAlBLﬂLBaLUII bU:LLJ.\-J.cIlL; G\. s LLU'.iuclAb.Lc: e luw \.1!!: .LJ.th- \_UL-ULJ. .LLt:kiuClex.
At low frequencies we can retain in the expression for B only the term v, = —aD/ (p,b H, 0.
In this case the formulas for the reflection coefficients will become
ik (m 4 2m,) L pyal . ik (m 4 2my) (5.3)
Ko= 3 3t 1= 7 Tpnat .
ik (m — 2my) — poa’ ik (m =+ 2my) — 2poa

5 yro 1

m = o*p°H°, m, = ap;0,H,

The quantities m and 2m,can be regarded as the mass of a single period of the plate and the
mass of the ribs per period respectively. Formula (5.3) is known as the mass law /1/ for a
plate with a singly periodic set of ribs.

In the case of clamped nodes the diagonal approximation cannot be used in (4.l1), and
such simple formulas cannot be obtained. We shall establish that, irrespective of the form of
BCC, we can write the reflection coefficient of the second kind in the form (5.1) (or (5.2)
for an appropriatevalue of B). We shall write (4.1) and (4.4) uniformly as (n > 0)

wap1n + Z’ DnmPrim = — d8,° (5.4)
Tfn'lm
en' U == Em | Pm — N -"?l'—

(M=1 in the case of clamped nodes and 7 =10 for free nodes).

w_u—n

We separate in (5.4) the equation with n=0 and put pyan = —p;eXa with the new unknown
X, (n>1). For the latter we have the following infinite system of equations:
wan+ 2!' Unmxmzvno (5.5)
mz1

We introduce the solution matrix || u,m|| for this system, so that

= Z PnmVmo

m21

Then the first equation of system (5.4) yields
s < o)
Pro=—0a\Wo— Z Vom 2l BmkUxo)
mz1 k=1

Let us now introduce the effective quantity B,, for the case of one-sided contact
between the plate and the liquid

2
Cmte—n 2N VvumVumuho (5.6)
N - m n>1 %l k>1

B,
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Replacing the parameter v by 2v in the symbol for the plate operator we obtain the effective
quantity B,, for the case of two-sided contact. Then the exact expression for the reflection
coefficient (4.3) becomes

L S 5
LY -+ v 2
K“:-zkx—“”—T' %(‘;t=ko‘—~-§; (5.7
4, —
. ikx:,, . 2
AT K= ko' — 5 (5.8)

for one-sided and two-sided contact respectively. 1In the case of clamped nodes we have a low-
frequency asymptotic form

the frequency

(3 . + 2n* ! Ve + 2n* v ! Em=1
‘T ¥ iy T F Y/ L (w5 iy >
m>1

When ¢ =0, the system is identical with the system given in /9/.

6. cCertain energy identities are of use in checking the numerical calculations. Apply-
ing the formulas of Sect.2 to the total field we obtain, in the same way as (2.4),

D3 snm 2 Re Y EE — Af — p? = VIF — Ag® — pho® (6.1)

Here the summation is carried out over the propagating waves represented in the scattered fielc

P1+ 9= 28,00 €XD (i (AT + Uppt) — V2) {6.2)

Let us consider the frequencies below the first cut~off frequency and separate from the
amplitude §,, the diffraction component r == 8y, — . Then (6.1) can be rewritten in one of
the following forms:

lges l==Ilr+ Rl=1 lr 2= .2 Re (AP (6.3)
15906 ' LN i v i i AR RAST

In the case of two-sided contact between the plate and the liquid, we introduce an addi-

tional transverse field (z< O)

g =32 snm exp (i (AT + nll) + Vam?) (6.4)

and separate the diffraction component {==sy ~— T (I is the transmission coefficient for the
homogeneous plate) from the amplitude of the principal wave. In this case (6.1) will take

PN

e .LU.LIH

S (| sam [ + |snm ) Re VB — AT — et = VB — A —po’ (6.5)

and identity (6.3) will be replaced by
[s00 [* + [s00' P=|r+RE+|t+TE=1 (6.6)
jrp+[tP=—2Re(Rr + Tt)

Relations (6.3) and (6.6) are analogs of the optical theorem for the model in question /10/.

As an example of the application of (6.5) we shall obtain an estimate for the amount of
energy transferred from the incident wave to all other waves. We write the amplitude $g in
complex form: Sg==u -+ iv+ whereupon we have so’' =1 — u — iv and a whole sequence of obvious
relationships

ZZ (Isnm' +|sﬂmlz)Re I/k’ m2 -
n2-+m
- _: T 2 [ 712}
V — Ao — jig? {1—1| oo| — |Se0 |}

VIE AT e 2u — 20t — 20%) < o~ VI — Rt — i
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Thus the proportion of the energy transferred from the incident wave to all other waves does
not exceed 0.5.

Let us now consider a numerical investigation of the dynamics of the reflection coeffic-
ient X of the principal wave, with respect to the frequency. We used the exact formula (4.3),
by solving the infinite system (5.4) for a steel plate of thickness H°=4 cm., with steel
reinforcing ribs of thickness H, =3 cm. and height 1§, =20 cm., spaced a distance a= 60 cm.,
for the case of two-sided contact between the plate and water. Fig.l refers to the free nodes,
and Fig.2 to the clamped nodes. The relations connecting the modulus of the reflection coef-
ficient m =]k] and the phase F=arg XK with the frequency are shown. For comparison, the
dashed lines depict the same relationship for a hypothetical rib density exceeding that of
steel by a factor of 10, and the dot-dash lines refer to the homogeneous plate. The initial
segments of the curves in Fig.l obey the mass 'law (5.3) up to a frequency of approximately
0.6 kHz. As the frequency increases, the reflection coefficient oscillates about the values
corresponding to a homogeneous plate, and narrow transmission zones appear in which the value
of the reflection coefficient falls sharply. An increase in the mass of the ribs leads to
reduction in the frequencies at which the reflection coefficients undergo sharp changes; this
is related to the effective increase in the wave number of the construction. As the spacing
between the reinforcing ribs increases, the distance separating the curves constructed for
different rib densities decreases and they tend asymptotically to the curves for a homogeneous
plate. When > 35 kHz (where one and half wavelengths in the liguid can £it between the
ribs), the influence of the ribs can be neglected.

1

7 A = [ ! iy -~
ey P i N AR TN
LY R l/ ) S
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. | i '
" ! : ! .

\
|
i
7 A 0 i ]
AR i ’ / | ‘ N 1
/ L NI
g - -
i l 1 I 100° 1 - ‘
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i e - B L Ne=s
e & N ‘
- f ; ‘ - . v I l
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! z J fkHz ! " J 4 fHxHz
Fig.l Fig.2

In the case of clamped nodes (Fig.2) the reflection at low frequencies (f<{0,4 kHz) is
almost complete. Below 1.4 kHz the reflection coefficient is independent of the mass of the
ribs, the latter behaving as if they were infinitely heavy. The reflection coefficient reaches
values corresponding to a homogeneous plate more slowly in the case of clamped nodes than of
the free nodes, On the whole, the conditions at the nodes fixed with help of the second-order
BCC exert a substantial influence on the acoustic properties of the plate, especially at low
and middle frequencies.

REFERENCES

1. SHENDEROV E.L., Wave Problems in Hydroacoustics. Leningrad, Sudostroenie, 1972.

2. BELINSKII B.P., VESHEV V.A., KLYUKIN I.I. and KOUZOV D.P., On the influence of the ribs
on the propagation of flexural waves in a plate of finite width. Izv. Akad. Nauk SSER,
MTT, No.5, 1977.

3. KOUZOV D.P., Diffraction of a cylindrical hydroacoustic wave at the join of two semi-in-
finite plates. PMM Vol.33, No.2, 1968.

4. BELINSKII B.P., KOUZOV D.P. and CHEL'TSOVA V.D., On acoustic wave diffraction by plates
connected at a right angle. PMM Vol.37, No.2, 1973.

S. KOUZOV D.P., On the acoustic field of a point source in a rectangular space bounded by
thin elastic walls. PMM Vol.43, No.2, 1979.

6. MACE B.R., Sound radiation from fluid loaded orthogonally stiffened plates. J. Sound and
Vibrat., vol.79, No.3, 1981.

7. BELINSKII B.P., On the uniqueness of the solution of stationary problems of acoustics for
reinforced plates. Zap. nauch. seminarov LOMI, vol.l04, No.ll, 1981.

8. KANTOROVICH L.V. and KRYLOV V.I., Approximate Methods of Higher Analysis.
Interscience Publishers, N.Y. and Groningen, 1964.

9. DAREVSKII V.M. and SHARINOV I.L., Novel solution of the problem of the bending of rect-
angular plate clamped at the edges. In book: Uspekhi mekhaniki deformiruemykh sred.
Moscow, NAUKA, 1975.

10. BELINSKII B.P. and KOUZOV D.P., An optical theorem for a plate-ligquid system. Akust. zh.,

Vvol.26, No.l, 1980. Translated by L.K.



